New Clues in the Pursuit to Understand the Fatty Acid Imbalance of Cystic Fibrosis

Dr. Norris

Persons with cystic fibrosis typically have an imbalance in their fatty acid levels. A prominent aspect of this imbalance is a deficiency of linoleic acid, which is one of the so-called essential fatty acids. Despite decades of research, the mechanisms of the imbalance are not fully understood. To better understand this fatty acid imbalance, a group of researchers at the University of Iowa, Kansas State University, and the Karolinska Institutet in Stockholm Sweden worked together to study pigs and ferret with cystic fibrosis. The results showed that the imbalance exists at birth even before first feeding. This result argues strongly against one of the leading prior hypotheses which was that the imbalance might stem from the nutrient malabsorption that occurs in cystic fibrosis. Instead, the results suggest that several molecular mechanisms might be responsible for the imbalance, including excess metabolism of arachidonic acid, oxidative isomerization of unsaturated fatty acids, and/or biliary loss of phospholipids containing unsaturated fatty acids. The senior author of the resulting manuscript describing the findings was Dr. Norris from our Division. The work can be found published in the journal Clinical Science (link).

Highly Effective Modulator Therapy for Cystic Fibrosis Impacts Body Mass Index and Insulin Sensitivity

Cystic fibrosis is a genetic disease that causes dysfunction in multiple systems, but especially in the lungs which progressively deteriorate. The past few years have seen massive progress in the medical treatment of cystic fibrosis. Drugs have come to market that correct the basic molecular defects that cause cystic fibrosis. These drugs are classified as “highly effective modulator therapies”. These therapies must be tailored to each person, by matching to the different mutations that cause cystic fibrosis. In 2019, a blend of three modulators was approved for treatment of the most common form of cystic fibrosis involving the “F508del” mutation. This therapy combines elexacaftor, tezacaftor, and ivacaftor (“ETI”). This therapy dramatically improves lung dysfunction in persons with cystic fibrosis due to F508del mutation. Persons with cystic fibrosis are at very high risk to develop diabetes. For example, those who have only have F508del mutation have an over 80% chance of developing diabetes by middle age. It is currently not known if ETI-therapy for cystic fibrosis will impact diabetes risk. To address this knowledge gap, investigators from 5 institutions conducted a study of twenty persons with cystic fibrosis. Each person underwent an oral glucose tolerance test before and roughly 10 months after starting ETI-therapy. Interestingly, there was not a significant change in glucose levels after starting ETI. However, C-peptide levels increased with ETI therapy, consistent increased insulin secretion. Accordingly, an insulin resistance index significantly increased as did body mass index. Taken together, these results suggest that ETI therapy produces a degree of insulin resistance, likely related to an increase in body mass index. The longer term impact of ETI and related therapies on diabetes risk and body weight will need careful ongoing study. The faculty investigators involved in the study from our division were Dr. Larson Ode and Dr. Norris. The publication describing the study and results can be found at this Pubmed link.

Diabetes Research Training Program Receives Renewed Grant Support

Fraternal Order of Eagles Diabetes Research Center

There is a drastic need to devise better approaches to prevent, treat, and ultimately reverse diabetes. Essential to any progress is the constant training of skilled cohorts of research investigators. To this end, since 2017, the University of Iowa has nurtured a Diabetes Research Training Program. The Program supports mentored postdoctoral training focused on various diabetes research topics. Six postdoctoral trainees are supported at any given time, typically for two years each. To date, 19 postdoctoral trainees have been support by this Program, including pediatric endocrine faculty Dr. Pinnaro while she was a fellow. The Program was conceived by adult endocrinologist Dr. Dale Abel and pediatric endocrinologist Dr. Norris. Based on a proposal detailing their vision, they received a 5-year “T32” grant from the NIH to fund the program 2017-2022. During this time, the Program has been a resounding success, with most trainees having progressed onward in their research careers in academia or related private industry. Based on the strengths of the initial trainees, their research, and career progress, last year Drs. Norris and Abel wrote a renewed 5-year proposal for ongoing training. Today, we are pleased to announce that the proposal was viewed very favorably and that an additional 5 years of grant support will be provided by the NIH (you can view a summary of the grant at this link). Future or existing pediatric endocrine fellows who are interested a career focused on diabetes research can benefit from this program and are encouraged to contact Dr. Norris to discuss the application process.

Cystic Fibrosis Induces Severe Redox Stress in Pancreatic Islets

Dr. Norris

For reasons that are not well understood, persons with cystic fibrosis are at very high risk to develop diabetes. A major factor in this risk is poor secretion of insulin from beta-cells. A research team at the University of Iowa has now published findings that may have identified one of the root causes. The team found exceptionally high levels of reactive oxygen species in pancreas with cystic fibrosis. Furthermore, the islets isolated from cystic fibrosis pancreases exhibited increased production of reactive oxygen species and impaired secretion of insulin. However, two different approaches aimed at reducing or neutralizing excess reactive oxygen species production failed to improve insulin secretion. Nonetheless, the findings highlight what might be an important contributor to poor insulin secretion in persons with cystic fibrosis. From our division, Dr. Andrew Norris contributed to the research and publication. The paper can be found at this DOI link and a full text version can be found at this PubMed Central link.

University of Iowa F.O.E. Diabetes Research Center Featured in New Video

The Fraternal Order of Eagles Diabetes Research Center

Each June, the American Diabetes Association hosts its annual scientific meeting. This meeting is the world’s largest and most important gathering focused on diabetes research, attracting over 10,000 attendees who come from across the world to hear the latest cutting edge research. This year, the University of Iowa was featured in a short video film shown at the meeting. The video focused on how the Fraternal Order of Eagles Diabetes Research Center (FOE-DRC) is advancing diabetes research . The FOE-DRC was created in 2008 when the Fraternal Order of Eagles pledged $25 million to establish a diabetes research center at the University of Iowa. With this gift, the FOE-DRC has grown to include over 100 faculty researchers from across the University. Collectively, these faculty conduct over $30 million of NIH-funded research annually. Several members of our Division are faculty in the FOE-DRC: Drs. Curtis, Larson Ode, Norris, Pinnaro, Tansey, and Tsalikian. Earlier this year, the American Diabetes Association requested that investigators at the University of Iowa help create a short video highlighting the work of the FOE-DRC. The video is now available on youtube (link to video here). The video highlights work by two members of our Division: Dr. Larson Ode and Dr. Norris, as well as several colleagues in the Division of (Adult) Metabolism and Diabetes and in the FOE-DRC.

A Novel Target to Treat Type 2 Diabetes

Dr. Norris

Type 2 diabetes affects over 35 million Americans and is a leading cause of disability, expense, and mortality. Type 2 diabetes occurs worldwide and some countries have rates up to roughly three times higher than in the US. Type 2 diabetes rates are climbing, in part because there are not optimal therapies and preventative strategies. Dr. Norris has contributed to a team that has identified a novel molecular target to treat type 2 diabetes. The new findings have now been published in the scientific journal Nature Communications (link). The new target is a protein named SWELL1. It is a chloride transport protein and is involved in beta-cell and adipose tissue functions. Interestingly, certain small molecules that inhibit SWELL1 both improve insulin sensitivity and increase beta-cell function. This combination of effects potently improved blood sugar levels in mice, indicating that these types of SWELL1 inhibitors may be a very effective means to treat and/or prevent type 2 diabetes.

Dr. Norris Named Interim Co-Director of the Fraternal Order of Eagles Diabetes Research Center

Dr. Norris

The Fraternal Order of Eagles Diabetes Research Center (FOE-DRC) is located at the University of Iowa. The FOE-DRC was created in 2008 when the Fraternal Order of Eagles pledged a $25 million gift toward diabetes research. Since then, the FOE-DRC (link to FOE-DRC homepage) has grown to include over 100 faculty researchers from across the University. Collectively, these faculty conduct over $30 million of NIH-funded research annually. Major innovations have included studies of mitochondrial function, muscle wasting in diabetes, heart dysfunction in diabetes, diabetes in cystic fibrosis, and use of electromagnetic fields to lower blood sugar. From 2013-2021, the Center was under the stellar leadership of Dr. Dale Abel, who now has been recruited to lead the Department of Internal Medicine at UCLA. While a new permanent FOE-DRC head is being recruited, Dr. Andrew Norris from our Division will serve as interim Co-Director of the FOE-DRC, alongside Dr. Kamal Rahmouni. From 2014-2021, Dr. Norris served as Associate Director of the FOE-DRC. Dr. Norris has been a diabetes researcher for over 2 decades, leading translational studies related to the integrated physiology of diabetes across the lifespan, with recent focus on cystic fibrosis related diabetes and early life determinants of diabetes risk.

Benefits of Home Review of Blood-sugar Data in Youth with Type 1 Diabetes

Dr. Catherina Pinnaro

Dr. Catherina Pinnaro and her research team have just published a new report indicating benefits to reviewing diabetes device blood sugar data. The article is entitled “Diabetes Device Downloading: Benefits and Barriers Among Youth with Type 1 Diabetes”, and was just published as a peer reviewed research article in the Journal of Diabetes Science and Technology (pubmed Link; doi Link). Importantly, the data suggest that blood sugar levels improve when patients/families make insulin plan adjustments based on review of recent blood sugar patterns. Co-authors on the work from our division included Drs. Tansey, Tsalikian, and Norris. Also contributing as the lead author was future pediatric endocrinologist Dr. Benjamin Palmer.

Fetal and Newborn Glucose Metabolism: New Textbook Chapter

Recently, Dr. Norris co-authored a new chapter entitled “Glucose Metabolism in the Fetus and Newborn, and Methods for Its Investigation“. The chapter is part of the newly published Fetal and Neonatal Physiology textbook, 6th edition, edited by Polin, Abman, Rowitch & Benitz (Hardcover ISBN: 9780323712842). This is one of the leading standard textbooks for perinatal and neonatal physicians. Dr. Norris co-authored the chapter with Dr. Sarah A. Wernimont, who is an maternal-fetal medicine faculty physician at the University of Minnesota. Both Dr. Wernimont and Dr. Norris have directed research aimed at better understanding glucose metabolism in the maternal-fetal system. The textbook is available from publisher Elsevier and also at commercial book outlets.

Scientific Workshop on Cystic Fibrosis Related Diabetes

The National Institutes of Health and the Cystic Fibrosis Foundation held a 3-day workshop devoted to cystic fibrosis related diabetes from June 23-25 (workshop link). The workshop was attended by interested physicians, scientists, and affected families and persons, and also was open to the public. The purpose of the workshop was to discuss the current state of knowledge about this form of diabetes, and to help inform future research directions. Dr. Larson Ode and Dr. Norris from our division both spoke on their areas of related expertise, with talks entitled “Glycemic Abnormalities in Young Children” and “Innervation of the CF Pancreas” respectively. The University of Iowa was also represented by two other speakers, gene therapy expert John Engelhardt PhD and pediatric gastroenterologist Aliye Uc MD. Drs. Engelhardt and Norris were also part of the workshop planning committee, along with other experts from Children’s Hospital of Philadelphia and Boston Children’s Hospital.